Cuero: Un Material Natural de Alta Tecnología
Hechos en lugar de Palabras
Autores: Benjamin Autenrieth, Matthew P. Walker, Ulrich Buckenmayer, Jordi Escabrós
Trumpler GmbH & Co KG, Hafenstrasse 10, 67547 Worms
Introducción y Motivación
Todos conocemos y admiramos el cuero como el material hermoso, versátil, duradero, sostenible y único que sin duda es. El cuero es el material que da carácter a innumerables artículos que usamos en nuestro día a día. El cuero es el material del que están hechas nuestras botas de montaña impermeables, nuestras carteras, bolsos, cinturones, trajes de moto y fundas de asiento altamente estresados. El cuero proporciona un aspecto elegante y lujoso, un tacto agradable y un olor distintivo, por no hablar de las propiedades técnicas inherentes, como una resistencia al desgaste incomparablemente alta, por nombrar solo una.
Estos innumerables aspectos positivos y la atracción y admiración profundamente arraigadas por el cuero han impulsado el desarrollo y la comercialización de un número creciente de materiales artificiales que están diseñados para parecerse al cuero e imitar algunas de sus propiedades más indiscutibles. Algunos de estos materiales artificiales son más baratos y fáciles de producir y manipular; algunos son, sin duda, excelentes materiales por derecho propio. Otros, claramente, son imitaciones baratas que dañan la reputación del cuero genuino.
Este extenso estudio experimental busca resaltar uno de los atributos más destacados de las pieles: su origen natural.
Utilizando una metodología altamente sofisticada, a saber, la tecnología de radiocarbono, aplicada mediante el método analítico ASTM-D6866, se establece el contenido de base biológica (renovable) de varios auxiliares comerciales del cuero. (1) (2)
Más allá de eso, se examina una selección de cueros comerciales y artículos de cuero. Las medidas resultan en valores definidos, que se comparan con los encontrados para diversas imitaciones sintéticas y los respectivos artículos fabricados con dichos materiales.
El Término Sostenibilidad
El término “sostenibilidad” es hoy en día un slogan omnipresente que se utiliza popularmente para promover productos y tecnologías más o menos nuevos. A pesar de la existencia de definiciones oficiales, el término sostenibilidad se emplea a menudo únicamente para dar una impresión más o menos justificada de compatibilidad ambiental y un impacto social positivo. Para ser justos, la sostenibilidad es un asunto complejo que involucra muchos factores que deben tenerse en cuenta para garantizar una evaluación profunda y completa. Para la valoración de algunos de estos factores, no existen reglas generalmente acordadas y se deben realizar juicios subjetivos. (3) (4)
Este estudio se centra en solo uno, que es un requisito bastante esencial para la sostenibilidad: la “renovabilidad”.
La renovabilidad solo se puede lograr utilizando productos naturales. Son productos derivados de fuentes vegetales o animales. Cabe señalar que una sustancia no puede ser sostenible sin ser renovable, sin embargo, lo contrario no siempre es cierto. Un material, que en principio es renovable, puede que de hecho se esté recolectando a un ritmo y en una dimensión que cause graves daños a nuestro medio ambiente y a la sociedad. Todos debemos ser conscientes de esta importante responsabilidad.
El Método Analítico ASTM D-6866
Para un proveedor de productos químicos, a menudo no es difícil calcular con una precisión razonable la proporción de ingredientes renovables y no renovables en un producto determinado. El aceite de colza, por ejemplo, es muy probable que sea renovable y el aceite de parafina claramente no es renovable. Sin embargo, esta estrategia no está exenta de limitaciones y hay muchos casos en los que la situación puede no ser tan clara. Seguramente existen sustancias químicas que pueden derivarse de recursos fósiles renovables, naturales o no renovables. El alcohol estearílico es solo un ejemplo de una sustancia que existe en ambas variedades en el comercio. Idéntico a nivel molecular, a menudo es simplemente el precio lo que indica el origen del material base.
Es comprensible que este enfoque suficientemente preciso pero algo informal sea menos convincente que un método de prueba experimental establecido que arroja valores definidos y confiables.
De hecho, tal método de prueba existe y constituye el centro de este estudio. (1)
El principio del método presentado y utilizado aquí es en realidad el mismo que se utiliza para determinar la antigüedad por carbono de los artefactos arqueológicos. La técnica fue establecida por el científico estadounidense Willard F. Libby, quien recibió el premio Nobel de Química en 1960 por este logro fundamental. (7)
Los conceptos básicos de este método de prueba se presentan brevemente a continuación.
La base de toda la materia animal y vegetal es el carbono. Este elemento químico existe como tres isótopos naturales presentes en diferentes abundancias: 12C (aprox. 99%), 13C (aprox. 1%) y 14C (aprox. 1,36 átomospor 1012). En contraste con los isótopos 12C y 13C, que son estables durante el tiempo geológico, el 14C (radiocarbono) es radiactivo y se descompone con una vida media de aproximadamente 5730 años a 14N. (8)
El 14C para describirlo de manera simplificada, se forma constantemente por reacción de la radiación solar con el nitrógeno en la atmósfera superior. El radiocarbono 14C se oxida finalmente a dióxido de carbono (14CO2) que es absorbido por las plantas, junto con los dióxidos de los otros isótopos de carbono, en el proceso de fotosíntesis. A medida que los herbívoros comen las plantas y los carnívoros los herbívoros, los tres isótopos de carbono se incorporan a todos los organismos vivos. Una relación de equilibrio constante entre los tres isótopos de carbono 12C, 13C y 14C (que refleja la relación en nuestra atmósfera) se encuentra en todos los organismos vivos. La razón de esto es la absorción y el metabolismo continuos de 14C adicional por los organismos vivos (Figura 1). (9)
Una vez que un organismo muere, su metabolismo también se detiene. A partir de este momento no se absorbe más carbono radiactivo. Sin embargo, el 14C que contiene el organismo en ese momento continúa decayendo. En consecuencia, la cantidad de 14C y la relación de 14C a 12C disminuye constantemente a un ritmo conocido a lo largo del tiempo (Figura 2).
(* Imagen: Universidad de Tübingen. Https://www.urmu.de/de/Forschung-Archaeologie. URMU Blaubeuren)
La relación de 14C y 12C en una muestra de materia orgánica se puede utilizar para saber cuánto tiempo hace que la misma estuvo viva. (9)
Después de unos cincuenta mil años, la cantidad de 14C en la materia orgánica que alguna vez vivió, ha disminuido efectivamente a cero. Esto significa que las muestras de mayor edad, como por ejemplo el petróleo, con una edad de quizás 60 a 180 millones de años, no contienen esencialmente 14C. El corolario lógico es que los productos químicos y los materiales derivados de ese petróleo tampoco contienen 14C.
Consideremos nuevamente el ejemplo mencionado anteriormente: una muestra de un aceite vegetal natural contendrá la proporción original y bien conocida de los tres isótopos de carbono 12C, 13C y 14C establecidos en la atmósfera y todos los organismos vivos. Por el contrario, el aceite de parafina se produce a partir de aceite mineral y, por lo tanto, no contiene 14C. Por tanto, el contenido de carbono del aceite de parafina está compuesto en su totalidad por los isótopos “fósiles” 12C y 13C. Por tanto, la medición de la relación 14C:12C en una mezcla de aceite vegetal y de parafina nos permitiría calcular las proporciones relativas de los dos aceites y con ello la relación de material renovable y no renovable (fósil).
Cuando se aplica a productos multicomponente, una limitación obvia de esta técnica es que solo se considera el material orgánico. Un ejemplo un tanto sorprendente es que una mezcla de 5% de azúcar con 95% de sal será devuelta por el análisis como 100% renovable. Obviamente, esta limitación debe tenerse en cuenta de manera adecuada. Al intentar calcular la proporción renovable de un producto en peso, es por tanto necesario saber cuánto material orgánico contiene. Para muchos materiales, esto se puede hacer convenientemente midiendo el contenido de humedad y cenizas de la muestra y asumiendo que el resto es orgánico:
Z% Materia orgánica = 100% – X% Agua – Y% Contenido de ceniza
Para las mediciones de ASTM D-6866, la muestra se calienta a 900 ° C en presencia de oxígeno. A esa temperatura, la materia orgánica se quema convirtiendo los isótopos de carbono presentes (12C, 13Cy 14C) en una mezcla de los correspondientes dióxidos. Estos, a su vez, tienen diferentes pesos moleculares y pueden separarse mediante un tipo especial de espectrometría (espectroscopía de masas con acelerador, AMS). La proporción de las formas de dióxido de carbono corresponde directamente a la proporción de los diferentes isótopos de carbono. Tomando esta relación, se puede calcular el contenido de materiales renovables y fósiles en la muestra.
Resultados–Productos Químicos para Cuero
Se ha ensayado una amplia gama de auxiliares que se comercializan parala fabricación de cuero aplicando la norma ASTM D-6866. Dentro del alcance de este estudio decidimos considerar los productos químicos que se aplican durante el proceso de recurtición y que, de acuerdo con su efecto previsto, permanecen hasta el final del proceso dentro de la estructura del cuero. Todas las muestras fueron tomadas de producción comercial.
En la Figura 3 se muestran los resultados para productos recurtientes (izquierda) y engrases (derecha).
Ni el sintan fenólico (recurtiente fenólico) tradicional ni el sintan( recurtiente )a base de acrilato ensayados, contienen carbono renovable. Estos productos son claramente de origen fósil. Se analizó extracto de Tara como referencia cuyo contenido orgánico es completamente renovable. Esta muestra no contiene ingredientes orgánicos derivados del petróleo. Los resultados de los agentes recurtientes que contienen proporciones variables de materias primas orgánicas renovables además de los sintanes fósiles se ubican entre los dos extremos (sintanes “biológicos” 1 y 2). Ejemplos de tales productos son mezclas de sintanes tradicionales con hidrolizados de proteínas. La relación entre contenido orgánico renovable y no renovable se refleja claramente en los resultados de la prueba.
Para los agentes lubricantes, la situación es muy similar. Examinamos a propósito productos comerciales con cantidades muy diferentes de ingredientes orgánicos renovables y fósiles. Las muestras de polímeros lubricantes comerciales establecidos en el mercado no contienen esencialmente carbono renovable y, por lo tanto, esencialmente no contienen sustancias orgánicas renovables. Estos productos se basan claramente en materias primas derivadas del petróleo. Dependiendo de sus formulaciones, los engrases comerciales basados en materias primas naturales pueden tener un contenido renovable muy alto, como se muestra en la Figura 3 (derecha).
- Usando el método analítico ASTM D-6866 es posible establecer el contenido de materia orgánica renovable en productos químicos. En el caso de composiciones químicas conocidas, experimentamos que existe concordancia entre los resultados de los cálculos teóricos y los obtenidos a través de ASTM D-6866.
Resultados-Cuero vs. Materiales Sintéticos
El examen de diferentes cueros comerciales y materiales sintéticos es esencialmente el corazón de nuestro estudio. La apariencia de los materiales sintéticos está diseñada para imitar el aspecto del cuero genuino con una precisión asombrosa. Una abrumadora mayoría de consumidores finales podrían encontrar bastante difícil diferenciar entre estos materiales sustancialmente diferentes. Usando mediciones ASTM D-6866, nos permite resaltar una característica distintiva fundamental de una manera clara y objetiva.
Primero, vamos a considerar los tests de diferentes muestras de cuero que provienen de la producción comercial de cuero para automóviles.
La figura 4 muestra los resultados de las pruebas
a) cuero curtido al cromo seco (wet blue), b) crust de wet blue y c) cuero curtido al cromo acabado. Los resultados se comparan con los cueros correspondientes de un sistema libre de cromo.
Como puede verse, el cuero curtido al cromo tiene un contenido orgánico renovable muy alto que va disminuyendo de a poco a medida que se avanza en el proceso de producción. Esto se debe claramente a la aplicación e incorporación de productos durante el recurtido, tintura, engrase y, en última instancia, materiales de acabado. Los productos químicos empleados contienen claramente carbono derivado del petróleo (fósiles) y esto se puede detectar.
Como se esperaba, el mismo patrón se muestra en la producción de cuero libre de cromo. Lo más interesante es que las mayores cantidades de productos de curtido y recurtido necesarios para lograr un cuero satisfactorio de un sistema libre de cromo pueden verse claramente reflejados en los valores. Nuevamente hay una explicación práctica para la observación realizada.
Las pieles terminadas ensayadas de ambos tipos poseen intrínsecamente una cantidad muy alta de material orgánico renovable. Debido a los procesos y productos químicos empleados, el contenido renovable en el cuero para automóviles curtido con cromo (87%) es notablemente mayor que el de la versión sin cromo (76%).
Luego comparamos los cueros automotrices ensayados vs. materiales sintéticos de la competencia. Al igual que con las muestras de cuero, éstas provienen de la producción comercial real y representan materiales que se usan en el interior del automóvil en contextos donde el cuero podría usarse en su lugar.
Los resultados de estas mediciones se resumen en la Figura 5.
Aunque los valores individuales no se informan aquí, todas las pieles y materiales sintéticos tenían contenidos de cenizas muy similares, lo que indica que en ningún caso había una proporción sustancial de material inorgánico presente. Por lo tanto, la comparación es entre materiales de contenido orgánico similar.
Como puede verse claramente, ninguno de los materiales plásticos automotrices tiene un contenido renovable significativo. Todas las muestras tienen como base materias primas derivadas del petróleo.El cuero compite con imitaciones sintéticas en muchas más áreas de nuestra vida diaria. Constantemente se han realizado exámenes de varios otros artículos a base de cuero y plástico. Hemos llevado a cabo comparaciones de zapatos y bolsos comprados en importantes paseos de compra con el propósito de realizar este estudio.
Para representar el sector de la confección, se comparó una piel de napa de oveja comprada en un local contra otra confeccionada con un material a base de PVC con textura de cuero. Una vez más, lo llamativo es el diseño intencionalmente similar de ambos tipos de artículos, los fabricados con cuero genuino y los hechos con imitaciones sintéticas.
Los resultados de estas comparaciones se muestran en la Figura 6.
En cada caso, como puede verse claramente, las pieles contienen una cantidad muy importante de sustancia renovable, mientras que para los materiales de la competencia ocurre lo contrario.
Los cueros ensayados en este estudio representan una gran parte del espectro de los tipos de cuero comercializados, y todos tienen contenidos renovables muy altos. El alto contenido de material renovable de ninguna manera se genera artificialmente, sino que es una propiedad fundamental e intrínseca del cuero genuino y se deriva de su materia prima más básica: el cuero o la piel de un animal. A diferencia de las pieles, todos los materiales plásticos de la competencia probados en este estudio tienen contenidos renovables bajos o insignificantes. Raramente promovido para ser “más verde” o explícitamente “libre de cuero”, la mayoría de los materiales comercializados de la competencia se basan en materias primas fósiles, no renovables.
Resumen
La medición de las equivalencias relacionadas con isótopos de carbono por ASTM D-6866 puede utilizarse para proporcionar una medida objetiva y sensible del contenido orgánico renovable de una muestra de material. La técnica se puede aplicar a auxiliares, así como a artículos complejos y terminados.
Este estudio compara el contenido orgánico renovable de cueros producidos comercialmente y los materiales sintéticos correspondientes. Todos los materiales se aplican en diferentes áreas de nuestra vida diaria.
Debido al colágeno natural del que se produce, el cuero exhibe un contenido intrínsecamente alto de material renovable, mientras que todos los materiales de la competencia probados en este estudio presentan contenidos renovables muy bajos. Para la fabricación de cuero, el efecto de varios químicos sofisticados es crucial. La contribución de los productos químicos del proceso en el contenido renovable del cuero acabado no es despreciable y se cuantifica y discute el impacto de una selección de productos químicos en el contenido biológico del cuero.
El cuero es un material único, natural y hermoso y podemos reconocerlo y promoverlo como tal. El objetivo de la presente contribución es respaldar esta afirmación con hechos claros y comprobables.
Referencias
- ASTM D6866 – 20, “Standard Test Methods for Determining the Biobased Content of Solid, Liquid, and Gaseous Samples Using Radiocarbon Analysis”.
- DIN EN 16575:2014-10, “Bio-based products – Vocabulary”; English version EN 16575:2014, English translation of DIN EN 16575:2014-10
- https://www.un.org/sustainabledevelopment/
UN World Commission on Environment and Development: “sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs.” - J. Buljan, I. Kral,„The framework for sustainable leather manufature”, 2. Edition 2019, UNIDO.
- DIN EN 16785-2:2018-05 “Bio-based products – Bio-based content – Part 2: Determination of the bio-based content using the material balance method”;German version EN 16785-2:2018.
- Open-Bio – Work Package 3: “Bio-based content and sustainability impacts”. Deliverable 3.5: “A methodology for the indirect assessment of the renewability of bio-based products”.
- W. F. Libby, “Radiocarbon Dating.” University of Chicago Press, Chicago, 1952.
- H. Godwin, “Half-life of radiocarbon.”Nature; 195, 1962, S. 984, doi:10.1038/195984a0.
- http://globecarboncycle.unh.edu/CarbonCycleBackground.pdf
- S. Kumar, https://digitash.com/science/chemistry/how-radiocarbon-dating-is-done/
- R. A. Muller,”Radioisotope Dating with a Cyclotron”. Science;196 (4289), 1977, S. 489–494.
Soy un fanatico de la página, muchas gracias por los consejos que aporta.